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bstract

An automated electronic tongue consisting of an array of potentiometric sensors and an artificial neural network (ANN) has been developed
o resolve mixtures of anionic surfactants. The sensor array was formed by five different flow-through sensors for anionic surfactants, based
n poly(vinyl chloride) membranes having cross-sensitivity features. Feedforward multilayer neural networks were used to predict surfactant
oncentrations. As a great amount of information is required for the correct modelling of the sensors response, a sequential injection analysis (SIA)

ystem was used to automatically provide it. Dodecylsulfate (DS−), dodecylbenzenesulfonate (DBS−) and �-alkene sulfonate (ALF−) formed the
hree-analyte study case resolved in this work. Their concentrations varied from 0.2 to 4 mM for ALF− and DBS− and from 0.2 to 5 mM for DS−.
ood prediction ability was obtained with correlation coefficients better than 0.933 when the obtained values were compared with those expected

or a set of 16 external test samples not used for training.
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. Introduction

Surfactants are involved in numerous industrial and domes-
ic purposes (emulsions for paints, pharmacology, detergents,
tc.), where they are used in aqueous media but also in organic
r hydroorganic media [1]. Mixtures of surfactants are often
xplored to enhance their performance properties; among these
e can enumerate foaming, wetting, emulsification or solubili-

ation of soil, dirt and pharmacological active compounds [2].
uch a wide application of surfactants may result in the pollu-

ion of surface waters. Hence, the fact that their determination,
s intermediates, in final formulation or in the environment, has
een focused by many works with several analytical approaches,
ncluding titrimetry [3,4], spectrophotometry [5,6], spectroflu-
rimetry [7,8], chromatography [9,10] and electrochemical
ethods incorporating ion-selective electrodes (ISEs) sensitive
o surfactants [11–13]. However, some of these methods, such as
pectrofluorimetry and chromatography, need expensive equip-
ent and special pretreatments.

∗ Corresponding author.
E-mail address: manel.delvalle@uab.es (M. del Valle).
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Potentiometry using ISEs for anionic surfactants is a very
onvenient option, given its simple measuring scheme and the
educed efforts in pre-treatment of sample. Variants have been
escribed for global detection of anionic, cationic or non-ionic
urfactant types. However, simultaneous detection of several
omponents by means of direct potentiometry is only possible in
ome cases, since highly selective sensors are needed and some
imitations are imposed on the composition of the solution under
nalysis.

In ISEs sensitive to ionic surfactants, an ion association
A+·B−) is used as the electroactive element in a polymeric
embrane, in which the anion B− is an anionic surfactant

nd the cation A+ is usually a cationic surfactant. Normally,
ensors for surfactants employ a poly(vinyl chloride) (PVC)
olymeric membrane specially formulated for an optimal
esponse. Depending on the used ion-pair, different selectivity
atterns are recorded for a set of surfactants. In the present
ork, an array employing surfactant ion-associations with

arger selectivity, plus cyclic ligands and ion pairs of generic

esponse are combined together in order to achieve the proper
ross-sensitivity features.

For fast qualitative and quantitative examination of multi-
omponent solutions, a multisensor approach, called “electronic

mailto:manel.delvalle@uab.es
dx.doi.org/10.1016/j.jpba.2007.09.013


2 al and Biomedical Analysis 46 (2008) 213–218

t
n
s
c
f
n

t
r
m
o
[
i
i
a
t

c
o
[
i
a
p
m
c
A
�
s

2

2

r

i
m
c
s
a
t
A
g
t
d
a
t
f
H
z
s
(
t
t
S
a

Table 1
Formulation of the ion-selective membranes employed in the construction of the
potentiometric sensor array

Electrode Ionophore Plasticizer PVC (%) Reference

E1 Hy-DBS (1%) o-NPOE (66%) 33 [32]
E2 T12A-DBS (1%) o-NPOE (66%) 33 [32]
E3 L1 (3.7%) o-NPOE (55.32%) 40.98 [31]
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Communication between the computer (PC Pentium at
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ongue”, has been proposed recently. It is based on the combi-
ation of an array of non-specific, poorly selective, chemical
ensors with partial specificity (cross-sensitivity) to different
ompounds in a solution, and an appropriate chemometric tool
or the data processing [14], for example by means of artificial
eural networks (ANNs) [15,16].

ANNs have been presented as an optimal performance in
he modelling of non-linear systems, such as the cross-term
esponses of potentiometric sensors [17,18]. The followed
ethodology requires training an ANN with a large number

f standards, needed to establish a numerical response model
19,20]. The use of flow systems, in our case a sequential
njection analysis (SIA) system, has been proposed to automat-
cally provide the large amount of information required by this
pproach [21,22], minimizing the effort in building electronic
ongue systems.

Different potentiometric electronic tongues based on the
ombination of an array of ISEs and ANNs have been devel-
ped in last years, to simultaneously quantify mixtures of ions
22–25]. Very significant is the work form the group of Kulap-
na, in Saratov University (Russia), who has developed several
pproaches of electronic tongues for surfactants [26–29]. The
resent study demonstrates the use of an array of potentio-
etric sensors, with cross-response to anionic surfactants, in

onjunction with a SIA system to facilitate the training of
NNs and enable dodecylsulfate, dodecylbenzenesulfonate and
-alkene sulfonate to be simultaneously quantified in aqueous
amples.

. Experimental

.1. Reagents and solutions

All solutions were prepared with doubly distilled water and
eagents used were of analytical grade.

Ion-selective electrode membranes were prepared dissolv-
ng the sensing element, the plasticizer and the polymeric
atrix in an organic solvent. Membranes were then solvent-

asted on graphite-based, inner solid contact potentiometric
ensors, of normal use in our laboratories [22,24]. Materi-
ls used for the preparation of the inner solid contact for
he potentiometric sensors were the epoxy resin components
raldite M and HR hardener (Uneco, Barcelona, Spain) with
raphite powder (50 �m, BDH Laboratory Supplies, UK) as
he conducting filler. Once formed, membranes were con-
itioned in a solution of their primary ion for 24 h. The
nalyte electroactive elements were the following ion pairs:
etraoctylammonium bromide (TOAB) (Fluka, Switzerland)
or generic response to anions; Hy-DBS, synthesised from
yamine 1622 (Hy) (Merck, Germany) and sodium dodecylben-

enesulfonate (NaDBS) (Carlo Erba, Italy) [30]; T12A-DBS,
ynthesised from tetradodecylammonium bromide (T12A)
Fluka, Switzerland) and NaDBS [30]; 7,13-bis(n-octyl)-1,4,10

rioxa-7,13 diazacyclopentadecane (L1); and L1-(DS)2, syn-
hesised from L1 and sodium dodecyl sulfate (NaDS) (Fluka,
witzerland) according to [31], comprised the cyclic lig-
nd in order to induce changes in selectivity. Plasticizers

1
a
w
[

4 L -(DS)2 (3.7%) o-NPOE (55.32%) 40.98 [31]
5 TOAB (4%)a DBP (65%) 29 [33]

a This membrane incorporates 2.00 wt.% PTCPB.

sed were 2-nitrophenyloctylether (o-NPOE) and dibutylph-
halate (DBP) (both from Fluka, Switzerland). The polymeric

atrix was poly(vinyl chloride) (PVC) (Fluka, Switzerland)
nd the volatile solvent was tetrahydrofuran (THF) (Merck,
ermany). An anionic additive was also used to formulate

he generic membrane: potassium tetrakis-4-chlorophenylborate
PTCPB) (Fluka, Switzerland). Table 1 summarises the for-
ulation of the different membranes, as taken from the

iterature. As all potentiometric measurements were performed
ith equivalent ionic media (carrier solution K2SO4, 5 mM),

ctivity coefficients were considered to be constant. Calibra-
ion experiments were made with surfactants NaDS, NaDBS
source as above) and �-alkene sulfonate (ALF) (Molins Kao,
pain).

.2. Instrumentation

The SIA system used in this determination is shown in Fig. 1.
he flow system was made up of a Crison 2030 automatic
icro-burette (Crison Instruments, Spain), fitted with a syringe

f 5 ml (Hamilton, Switzerland) and controlled entirely by a
C; a six ports (Ref. HVXM R36760) Hamilton MVP valve
Hamilton, Switzerland), also controlled by computer; a 7 ml
erspex mixing chamber with a conical base to aid emptying,
sed to homogenise the solutions; and a holding coil, formed
y a PTFE tube (Bioblock, France) with an internal diameter
f 1 mm and a total inner volume of 5 ml. The elements were
onnected together using low-pressure liquid chromatography
onnectors.

The measurement system comprised the detection system
sensor array incorporated into the system in series) and a
g/AgCl double-junction reference electrode (Thermo Electron
00200). Reference and ISE signals were passed to condi-
ioning amplifiers based on the INA116 (Burr-Brown, USA)
nstrumentation amplifier, to ensure that minimal current was
rawn during voltage measurement. A low-pass filter (2 Hz)
as used afterwards for each channel to reduce system noise

34].
Indicator electrodes, shown in the insert in Fig. 1, were all-

olid-state, tubular, flow-through electrodes of normal use in our
aboratories [35].
66 MHz) and the various apparatus of the SIA system was
chieved by means of RS-232 protocol. To this end, a program
ritten in LabVIEW6.1 (National Instruments, USA) was used

34].
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Further, the used sensors were characterised by means of
high-dimensionality calibrations with respect to two analytes,
taking profit of the versatility shown by the automated SIA
system. This characterisation represents an interference study

Table 2
Summary of calibration results of the five flow-through ISEs used in the sensor
array vs. the three surfactants considered

ISE E1 E2 E3 E4 E5

Sensitivity (mV/dec)
Analyte

ALF −66.315 −77.73 −118.52 −69.43 −81.915
DBS −77.88 −93.005 −131.795 −69.995 −97.085
DS −78.67 −86.635 −108.55 −74.83 −87.835

Potentiometric limit of detection (mM)
Analyte

ALF 0.0058 0.0018 0.0058 0.0094 0.0003
Fig. 1. Manifold of the SIA system employed in the study. The inse

.3. Procedures

ANNs were used to model the combined response of anionic
urfactants ALF−, DBS− and DS−. In order to build the calibra-
ion model, a set of standards with random concentration values
as generated. This set consisted of 64 mixed solutions auto-
atically prepared by the SIA system. Once calibration samples
ere measured, the complete set was randomly divided into

wo subsets: (1) a training set, which served to determine the
odel’s parameters; and (2) a test set, which enabled the model’s

redictive ability to be evaluated [36].
Neural network processing was developed with MATLAB 6.1

Mathworks, USA), using its Neural Network Toolbox (Neu-
al Network Toolbox 4.0.2, Mathworks, USA). In all cases,
NNs used were feedforward and trained by employing back-
ropagation algorithm, viz. Bayesian regularisation (BR). One
articularity of this algorithm is that it does not require an inter-
al validation set of samples to avoid overfitting [37].

. Results and discussion

.1. Characterisation of the sensor array

Calibrations towards each surfactant were made to check their
esponse and the cross-sensitivity features. Typical potentiomet-
ic calibrations were therefore performed, with the automated
IA system preparing a number of standards; this consisted in the
equential dilution of the stock solution and the measurements
f the ISE array in parallel [21]. In this way a concentration
ange of four decades was covered. Measured sensitivities are

ummarized in Table 2, where the slopes of the middle log-
rithmic response region (between the potentiometric limit of
etection and the critical micelle concentration) are indicated.
he reproducibility of the calibrations was better than 5% for

C
e

ws the design of the flow-through tubular all-solid-state electrode.

wo different-day consecutive verifications. The potentiometric
imit of detection corresponding to the above calibrations are
lso presented on the table, confirming a resolution capability
a. the �M level.

Regarding the slopes, it can be seen that the E3 ISE, using
n its membrane the cyclic ionophore L1, showed the highest
esponse (supernernstian) towards the three analytes. Apart, a
ifferent selectivity pattern is shown for the different consid-
red surfactants. Sensors E1 and E4 showed a higher sensitivity
or DS than for the other surfactants, while E2, E3 and E5
howed a highest response for DBS. Besides, the five used sen-
ors presented secondary response for the third surfactant, ALF.
his cross-sensitivity behaviour is what permitted to build an
lectronic tongue for the resolution of surfactant mixtures.
DBS 0.0025 0.0052 0.0025 0.0067 0.0049
DS 0.0146 0.0020 0.0146 0.0055 0.0028

alibrations carried out from a surfactant stock concentration of 10 mM. Fitted
quation: E (mV) = K + s log C.
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Fig. 3. Distribution of concentrations of the three anionic surfactants for the
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ig. 2. Response surface for the sensor based on Hy-DBS, where DS− is con-
idered to be the principal analyte and ALF− the interferent.

f great practical utility, since the value of the potentiomet-
ic selectivity coefficients in the Nikolskii–Eisenman equation
Kpot) [38] could be obtained with two degrees of freedom, vary-
ng the concentration of both the analyte and the interferent. As
xample, Fig. 2 shows the response surface for the sensor based
n Hy-DBS (E1), considering DS− as the primary analyte and
LF− as the interferent. The figure illustrates the experimental
oints prepared automatically with the SIA system, as well as
he three-dimensional response surface which corresponds to the
ikolskii–Eisenman expression, fitted with non-linear regres-

ion methods. It can be clearly seen how, with low concentrations
f the primary ion, the curvature gets steeper as the concentra-
ion of the interferent ion increases. The log K

pot
DS−,ALF− obtained

rom the surface fitting was −0.254.

.2. Building of the response model

As previously specified, 64 mixed solutions of ALF−, DBS−
nd DS− were automatically prepared with the SIA system in
rder to build the 3-analyte response model. Concentration of
he three anionic surfactants ranged from 0.2 to 4 mM for ALF−
nd DBS− and from 0.2 to 5 mM for DS−. This set of solutions
as randomly subdivided in two different subsets (viz. train-

ng and test) needed for the correct training of the network and
hecking its performance. The compositions of the prepared set
re shown in Fig. 3 and no non-random trend is revealed. In our
ase, the training set comprised 48 points and the test set 16 (ca.
5 and 25% of the total amount, respectively). In this step, the
recaution of reserving the extreme values for the training sub-
et was taken, avoiding the need for extrapolating these points
ut of the obtained model.

For each point generated by the SIA system, the correspond-

ng potential values for the array of five potentiometric sensors
ere recorded. These values were the input information to the
NN for each sample. Thus the number of neurons at the input

ayer equalled the number of sensors used, five. The output layer

i
w
t
o

raining (�) and test (©) samples prepared automatically employing the SIA
ystem.

as also defined a priori: it required three neurons, one for
ach species to be quantified (ALF−, DBS− and DS−). Only
tructures with a single hidden layer were assayed, as research
uggests that the results obtained are as good as those produced
ith two layers [39].
On the basis on previous experience [40], some configura-

ion details were fixed a priori. These details comprised the
pecific parameters for the learning algorithm, the learning rate
α) and momentum (β), which took the values of 0.1 and 0.4,
espectively; also, the transference functions used within each
euron layer were preset as sigmoidal for the hidden layer and
inear for the input and output layers. Prior to training, data were
ange-scaled between −1 and 1.

A study of the ANN architecture was performed in order to
ptimise the quantification of the three surfactants considered.
ll possible combinations of transfer functions in the hidden

tansig and logsig) and output (purelin and tansig) layers were
ested, as well as the number of neurons in the hidden layer
between 3 and 12). For each of the 28 configurations tested,
oot mean square error (RMSE) [41] values were recorded for
he test subset, the total value and according to each surfac-
ant considered. To select the best ANN, a direct comparison
f modelling performance for each analyte was performed. For
his purpose, predicted concentration values were plotted against
xpected, and the regression line of the comparison was calcu-
ated. A good ANN configuration should display small RMSEs
nd, for each ion, comparative lines with a good correlation and
lope equal to 1 with zero intercept.

To ensure that the results obtained did not correspond to local
inimums, the weight values were reinitialised at random and

he ANN retrained to see if the model showed convergence
n similar situations or whether it reached local minima. This

as done by repeating the network’s learning through resetting

he weight values three times and then evaluating the results
btained.
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Fig. 4. Selection of the configuration of the final ANN model. Obtained RMSEs val
both hidden and output layers and varying number of neurons in the hidden layer.

Table 3
Summary of the goodness of fits obtained for the three surfactants with training
(n = 48) and external test sets (n = 16)

Slope Intercept (mM)

Training
ALF− (r = 0.895) 1.022 ± 0.151 −0.05 ± 0.30
DBS− (r = 0.892) 1.065 ± 0.160 −0.13 ± 0.36
DS− (r = 0.941) 1.042 ± 0.111 −0.13 ± 0.3

Test
ALF− (r = 0.933) 0.891 ± 0.197 0.22 ± 0.45
DBS− (r = 0.936) 0.915 ± 0.197 0.36 ± 0.47
DS− (r = 0.954) 0.835 ± 0.150 0.44 ± 0.41
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is the correlation coefficient. Confidence intervals calculated at the 95% con-
dence.

As can be seen in Fig. 4, the configuration yielding the best
odel had six neurons in the hidden layer and used the tansig

ransfer function in both hidden and output layers.
Table 3 contains the regression values of comparison between

btained versus expected data for both the training and the exter-
al test subsets by using the optimal ANN configuration. In
oth cases, very good correlation was obtained with compari-
on lines indistinguishable from the theoretical values. It must
e remarked that the data used in the external test subset is not
mployed at all for the modelling, so goodness of fit is a measure
f the accomplished modelling performance.

In order to show a typical laboratory application, five syn-
hetic samples were prepared by appropriate dilution in K2SO4

ackground, processed with the SIA system and interpolated in
he formerly trained ANN model. Results are sketched in Table 4,
here the concordance between obtained versus expected results

an be visualized; the advantages of the proposed method are

able 4
esults obtained in the resolution of the manually prepared synthetic samples
mploying the finally trained electronic tongue

ample Expected surfactant
concentration (mM)

Obtained surfactant
concentration (mM)

ALF DBS DS ALF DBS DS

2.67 2.44 0.69 2.82 2.54 0.68
1.34 1.82 3.90 1.40 2.24 4.08
2.84 0.76 2.79 2.83 0.88 2.54
3.63 3.35 0.41 3.34 3.00 0.42
3.31 0.42 3.24 2.89 0.51 3.23

(
D
G

R

ues for ALF− (A), DBS− (B) and DS− (C) for different transfer functions in

vident in the accurate resolution of the surfactant mixture with
n extremely simple experimental procedure, once all the system
s fine-tuned.

. Conclusions

An automated potentiometric electronic tongue has been
eveloped by coupling a SIA system to an array of poten-
iometric sensors, to simultaneously quantify the surfactants
odecylsulfate, dodecylbenzenesulfonate and �-alkene sul-
onate in aqueous samples in the mM concentration range. The
IA system was able to generate automatically, and with a high-
egree of randomness, the information necessary for training
NNs, which were used to model the response of the sen-

or array, having a cross response to anionic surfactants. The
tructure providing the best modelling was a single hidden layer
ontaining six neurons.

The performance of the electronic tongue was checked with
amples not participating in the training process, where only
light differences between the obtained and expected concentra-
ions were found. The obtained results permitted the resolution
f a mixture of three anionic surfactants, an achievement nor-
ally attainable only with chromatographic techniques, this

ime reached by a very simple and direct use of appropriate
ensors plus advanced chemometric treatment.
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